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A Flexible Approach Combining the Spectral
Domain Method and Impedance Boundary
Condition for the Analysis of Microstrip
Lines

Chih-Wen Kuo and Tatsuo Itoh, Fellow, IEEE

Abstract—Impedance boundary condition model is incorpo-
rated in the spectral domain formulation to calculate the trans-
mission characteristics of microstrip line with lossy conducting
strip. Subsectional rectangular pulse functions are used as the
basis functions for the surface current distribution because of
the finite conductivity of the conducting strip. The approach has
the advantage of being more flexible without presuming the edge
condition of the surface current distribution and numerically
efficient, Numerical results for the phase and attenuation con-
stants of superconducting microstrip line are computed for a
comparison,

1. INTRODUCTION

HE spectral domain method has been one of the most

popular numerical techniques for the analysis of planar
guided-wave structure. It has been applied in the past to a
number of different configurations. The two-dimensional ver-
sion has been applied to the analysis of printed transmission
lines including the microstrip line, finline and coplanar wave-
guide [1]-[5]. The three-dimensional version was applied to
finite size structures such as resonators and discontinuities
[6], [7]. More recently, the method was extended to the case
where the conducting strip is not a perfect conductor [8]. In
such a formulation, the strip is treated as and impedance
boundary on which the tangential electric field is no longer
zero [9].

In most two-dimensional analyses, the basis functions used
for expansion of unknown currents or the unknown slot fields
. for the structures with perfect conducting strips have been the
entire-domain functions incorporating the. edge conditions
[10], [11]. As for the case when the conducting strip is not a
perfect conductor, current density at the edge of the strip
should remain finite [12], rather than infinite. When solving
this kind of lossy structure with the spectral domain method,
edge condition at the conducting strip edge need not be
presumed if the localized functions are used as the basis
functions. The main advantage of -using the localized basis
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Fig. 1. Enclosed microstrip line with lossy conducting strip.

functions is the flexibility of the technique. It is not necessary
to assume the qualitative nature of the unknown quantity
which will be expanded by the basis functions.

The extension of the spectral domain approach that incor-
porates the impedance boundary condition is applied in this
paper to analyze the transmission characteristics of microstrip
lines with lossy conducting strips. Subsectional rectangular
pulse functions are used as the basis functions for the surface
current distribution on the conducting strip. The proposed
approach in this letter has the advantage of combining the
versatility of the spectral domain method in solving the
planar guided-wave structure and the flexibility of the local-
ized basis functions in expanding the unknown quantities.
Expansion coefficients of the unknown surface current distri-
bution are adjusted automatically in the numerical process to
represent the real surface current distribution on the conduct-
ing strip.

Numerical results of phase and attenuation constants of a
superconducting microstrip line are computed as an example.
The results are compared with existing data that were ob-
tained by assuming the edge condition of the surface current
distribution at the edge of the superconducting strip.

II. ANALYSIS

Fig. 1 shows the structure of a shielded microstrip line
with lossy conducting strip. The field components of the
hybrid guided waves are expressed in terms of Ez(a,,, )
and H («,, y) that are the Fourier transforms in the x-direc-
tion of the axial field components E_(x, y) and H (x, ),
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assuming a z-dependence of e~ /%, The tangential electric
and magnetic fields are matched at the dielectric-air interface,
¥y = d. The conducting strip is treated as an impedance sheet
as part of the boundary condition at the interface. An
impedance sheet is characterized by a jump discontinuity in
the values of the tangential magnetic fields, but not in the
tangential electric fields. These conditions that exist on the
surface of the conducting strip are written as

VX (E*-E7) =

(1a)
J,, (1b)

where the plus and minus sign superscripts refer to field
components above and below the sheet, y is the unit normal
vector, Z is the uniform surface impedance of the impedance
sheet and J; is surface current density on the sheet.

After some mathematical manipulations, a coupled set of
equations relating the Fourier transforms of the unknown
surface current densities J, («,) and jsz(a,,) to the Fourier
transforms of the tangential electric fields is obtained as

1
X (H*— H™) = —Eﬁx(ﬁxE’f):

[Zxx(a Z] x(a ( ) z(a ) = x(an)’ .
(2a)
(@) () + [ Zo(a,) = Z] T (@) = E (a,),

(2b)
where Z, sz, Z and Zzz are the Fourier-transformed
Green’s functions of the microstrip line structure in the
spectral domain. Since the conducting strip has finite conduc-
tivity, the surface current distribution may not be the same as
that for the perfect conductor case. The subsectional rectan-
gular pulse functions are applied in this letter as the basis
functions for the surface current distribution to handle this
situation. Without presuming the edge condition of the sur-
face current distribution, this approach is more flexible. By
using the rectangular pulse functions as basis functions, the
expansion coefficients are adjusted automatically in the nu-
merical process to represent the real surface current distribu-
tion on the conducting strip. The Galerkin’s method is ap-
plied to (2) to construct a determinant equation for solving
the complex propagation constant 3.

III. NUMERICAL RESULTS

A computer program was written based on the previous
approach. In order to confirm the validity of program, nu-
merical results of a microstrip line with perfect conducting
strip were calculated and compared with available data [2].
Difference between our data and those in [2] is indistinguish-
able. Next, we compare our numerical results with existing
data for low T superconducting microstrip line. Since most
superconducting films are fabricated to be very thin, the
width-to-thickness ratio of these films are very large. As a
result, the tangential electric to magnetic field ratio on the
film surface is almost the same as the measured surface
impedance of the superconducting film. The feature makes
the impedance boundary condition a good model to use in the
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Fig. 2. Comparison of results of a low-T, NbN superconducting microstrip
line. The critical temperature of the NbN film is 7,-12.15°K and the
penetration depth at 0°K is Ny = 3200
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Surface current distribution of the superconducting microstrip line
in Fig. 2 at 5°K.

Fig. 3.

spectral domain method to solve for the transmission charac-
teristics of the superconducting microstrip lines.

Fig. 2 shows the variation of the normalized phase con-
stant with respect to temperature at 5 GHz of a low-7, NbN
superconducting microstrip line on a GaAs substrate with

= 13. The data in [8] were computed with current basis
functions assuming edge condition at the superconducting
strip edge while our data were obtained with subsectional

" rectangular pulse functions. As a consequence, there is some

difference between the two results. .

Extensive convergence tests were also performed to con-
firm the accuracy of the numerical results. The normalized
phase constant converges monotonically. Typically, it will
converge to a steady-state value after N = 7 rectangular
pulse functions are used for the current basis functions, with
the superconducting strip discretized into 2N subsections.
Fig. 3 shows the surface current distribution on the supercon-
ducting strip at 5 GHz. For the axial surface current compo-
nent J., the current density value at the edge of the strip is
only about five times the value at the center of the strip. This
observation justifies the use of subsectional rectangular pulse
functions as the current basis function. Presuming the edge
condition for the current basis functions may not be appropri-
ate.
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IV. CoNcLusION

Numerical results based on the proposed approach are
computed and compared with published data for the low T,
superconducting microstrip line. This extended spectral do-
main approach that incorporates the impedance boundary
condition is a flexible and efficient method of solving the
microstrip line with lossy conducting strip structures by using
the subsectional rectangular pulse functions as the current
basis functions.

The proposed approach is flexible because the subsectional
rectangular pulse functions simulated the true current distri-
bution on the conducting strip better. Numerical results of the
surface current distribution justifies this assumption. The
spectral domain method is also proven very efficient in
solving the microstrip line problem. One other advantage of
this approach is the capability of the rectangular pulse func-
tions in handling the structure when the surface impedance of
the conducting strip is nonuniform. This topic will be studied
in the future work.
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