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Combining the Spectral

Domain Method and Impedance Boundary

Condition for the Analysis of Microstrip
Lines

Chih-Wen Kuo and Tatsuo Itoh, Fellow, IEEE

Abstract–Impedance boundary condition model is incorpo-

rated in the spectral domain formulation to calculate the trans-
mission characteristics of microstrip line with lossy conducting
strip. Subsectionat rectangular pulse functions are used as the

basis funckons for the surface ‘current distribution because of
the finite conductivity of the conducting strip. The approach has
the advantage of being more flexible without presuming the edge
condition of the surface current dktribution and numerically

efficient. Numerical results for the phase and attenuation con-

stants of superconducting microstrip line are computed for a
comparison.

I. INTRODUCTION

T HE spectral domain method has been one of the most

popular numerical techniques for the analysis of planar

guided-wave structure. It has been applied in the past to a

number of different configurations. The two-dimensional ver-

sion has been applied to the analysis of printed transmission

lines including the microstrip line, firdine and coplanar wave-

guide [1] - [5]. The three-dimensional version was applied to

finite size structures such as resonators and discontinuities

[6], [7]. More recently, the method was extended to the case

where the conducting strip is not a perfect conductor [8]. In

such a formulation, the strip is treated as and impedance

boundary on. which the tangential electric field is no longer

zero [9].

In most two-dimensional analyses, the basis functions used

for expansion of unknown currents or the unknown slot fields

for the structures with perfect conducting strips have been the

entire-domain functions incorporating the edge conditions

[10], [11]. As for the case when the conducting strip is not a

perfect conductor, current density at the edge of the strip

should remain finite [12], rather than infinite. When solving

this kind of lossy structure with the spectral domain method,
edge condition at the conducting strip edge need not be

presumed if the localized functions are used as the basis

timctions. The main advantage of using the localized basis
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Fig. 1. Enclosed microstrip line with lossy conducting strip.

fimctions is the flexibility of the technique. It is not necessary

to assume the qualitative nature of the unknown quantity

which will be expanded by the basis functions.

The extension of the spectral domain approach that incor-

porates the impedance boundary condition is applied in ‘this

paper to analyze the transmission characteristics of rnicrostrip

lines with lossy conducting strips. Subsectional rectangular

pulse functions are used as the basis functions for @e surface

current distribution on the conducting strip. The proposed

approach in this letter has the advantage of combining the

versatility of the spectral domain method in solving the

planar guided-wave structure and the flexibility of the local-

ized basis functions in expanding the unknown quantities.

Expansion coefficients of the unknown surface current distri-

bution are adjusted automatically in the numerical process to

represent the real surface current distribution on the conduct-

ing strip.

Numerical results of phase and attenuation constants of a
superconducting microstrip line are computed as an example.

The results are compared with existing data that were ob-

tained by assuming the edge condition of the surface current

distribution at the edge of the superconducting strip.

II. ANALYSIS

Fig. 1 shows the structure of a shielded microstrip line

with lossy conducting strip. The field components of the

hybri~ guided waves are expressed in terms of I?z(a., y)
and H=( a ~, y) that are the Fourier transforms in the x-direc-

tion of the axial field components JZz(x, y) and HZ( x, y),
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assuming a z-dependence of e – J@+ The ta~gentideleCtriC

and magnetic fields are matched at the dielectric-air interface,

Y = d. The conducting strip is treated as an impedance sheet
as part of the boundary condition at the interface. An

impedance sheet is characterized by a jump discontinuity in

the values of the tangential magnetic fields, but not in the

tangential electric fields. These conditions that exist on the

surface of the conducting strip am written as

j x (E+– E-) = o

jx(H+– H-)= –;jx(jx E+)= J~,

where the plus and minus sign superscripts refer to

(la)

(lb)

field
components above and below the sheet, J is the unit normal

vector, Z is the uniform surface impedance of the impedance

sheet and J~ is surface current density on the sheet.

After some mathematical manipulations, a coupled set of

equations relating the Fourier transforms of the unknown

surface current densities 3$X(CYJ and .?~z(rxJ to the Fourier

transforms of the tangential electric fields is obtained as

[zXx(an) -z] J,x(cYn) + .zXz(an).i.z(an)= Ex(LYn),

(2a)

.%(%) .JSx(%)+ [-%2(%)–z]~sz(%)= J%(%J,
(2b)

where ZXX, ~X., 2ZX and ~Z, are the Fourier-transformed

Green’s functions of the microstrip line structure in the

spectral domain. Since the conducting strip has finite conduc-

tivity, the surface current distribution may not be the same as

that for the perfect conductor case. The subsectional rectan-

gular pulse functions are applied in this letter as the basis

fi.mctions for the surface current distribution to handle this

situation. Without presuming the edge condition of the sur-

face current distribution, this approach is more flexible. By

using the rectangular pulse, functions as basis functions, the

expansion coefficients are adjusted automati@y in the nu-

merical process to represent the real surface current distribu-

tion on the conducting strip. The Galerkin’s method is ap-

plied to (2) to construct a determinant equation for solving

the complex propagation constant /3.

III. NUMERICAL RESULTS

A computer program was written based on the previous

approach. In, order to confirm the validity of program, nu-

merical results of a microstrip line with perfect conducting

strip were calculated and compared with available data [2].

Difference between our data and those in [2] is indistinguish-

able. Next, we compare our numerical results with existing

data for low Tc superconducting microstrip line. Since most

superconducting films are fabricated to be very thin, the

width-to-thickness ratio of these films are very large. As a

result, the tangential electric to magnetic field ratio on the

film surface is almost the same as the measured surface

impedance of the superconducting film. The feature makes

the impedance boundary condition a good model to use in the

— This analysis
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Fig. 2. Comparison of results of a low- T= NbN superconducting microstrip
line. The critical temperature of the NbN film k TC-12.15“K and the
penetration depth at O“K is & = 3200 ~.
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Fig. 3. Surface current dktribution of the superconducting microstrip line
in Fig. 2 at 5°K.

spectral domain method to solve for the transmission charac-

teristics of the superconducting microstrip lines.

Fig. 2 shows the variation of the normalized phase con-

stant with respect to temperature at 5 GHz of a low- T= NbN
superconducting microstrip line on a GaAs substrate with

er = 13. The data in [8] were computed with current basis

functions assuming edge condition at the superconducting

strip edge while our data were obtained with subsectional

rectangular pulse functions. As a consequence, there is some
difference between the two results.

Extensive convergence tests were also performed to con-

firm the accuracy of the numerical resrdts. The normalized

phase constant converges monotonically. Typically, it will

converge to a steady-state value after iV = 7 rectangular

pulse functions are used for the current basis functions, with

the superconducting strip discretized into 2 IV subsections.

Fig. 3 shows the surface current distribution on the supercon-

ducting strip at 5 GHz. For the axial surface current compo-

nent J~z, the current density value at the edge of the strip is

only about five times the value at the center of the strip. This

observation justifies the use of subsectional rectangular pulse

functions as the current basis function. Presuming the edge

condition for the current basis functions may not be appropri-

ate.
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Numerical results

IV. CONCLUSION

based on the proposed approach are

computed and compared with published-data fo; ‘tie low T=
superconducting microstrip line. This extended spectral do-

main approach that incorporates the impedance boundary

condition is a flexible and efficient method of solving the

microstrip line with lossy conducting strip structures by using

the subsectional rectangular pulse functions as the current

basis functions.

The proposed approach is flexible because the subsectional

rectangular pulse functions simulated the true current distri-

bution on the conducting strip better. Numerical results of the

surface current distribution justifies this assumption. The

spectral domain method is also proven very efficient in

solving the microstrip line problem. One other advantage of

this approach is the capability of the rectangular pulse func-

tions in handling the structure when the surface impedance of

the conducting strip is nonuniform. This topic will be studied

in the future work.
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